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INTRODUCTION

Cryogenic wind tunnels, which use liquid nitrogen (LN,) as a coolant, can be
expensive to operate if controlled inefficiently because of the high cost of LNj;. 1In
order to minimize operating expense, it is important that a cryogenic tunnel be
equipped with a control system which accomplishes the following:

1. Establishes steady-flow conditions rapidly

2. Follows the most efficient transition path from one steady-flow setting to
the next

3. Maintains steady flow at the most efficient setting during dwell at steady-
state conditions for data acquisition

Of great importance is the need to sequence the test conditions (steady-flow settings,
or set points) in time so that the total energy consumed during state transitions is
minimized for all such sequences possible. This paper develops a simple, idealized
model of the cryogenic-wind-tunnel process for evaluation of state-transition costs
and an operational technique for determining the least expensive ordering of set
points of all possible orderings. Some minimum-cost state-transition control strate-
gies are identified and used where applicable for cost evaluation. Also, some
numerical results using National Transonic Facility (NTF) test parameters to determine
various set-point orderings are presented.

BACKGROUND

Minimum-energy, test—-direction strategies for cryogenic wind tunnels have been
studied by Balakrishna (ref. 1). A technique is developed in this reference for
sequencing cryogenic-wind-tunnel set points which establishes tunnel operating param-
eters necessary for minimum coolant consumption at steady flow. A test-direction
parameter is defined which enables minimum-cost ordering of a sequence of test points
based on minimizing steady-flow coolant consumption. This paper develops an ordering
technique based on transition dynamics rather than the static approach of Balakrishna.
George Gumas of Pennsylvania State University, Middletown, Pennsylvania, (private
communication) has investigated optimum dynamic-transition paths in cryogenic wind
tunnels which minimize consumed energy and transition times. Gumas computes optimum
coolant- and venting-flow rates for various linear transition-path directions based on
a single—-volume dynamic model of the cryogenic thermodynamics. The preliminary work
of Gumas is extended in this paper.

APPROACH TO SET-POINT ORDERING

In this paper a set point s for a cryogenic wind tunnel (to be defined formally
later) is a set of any three functionally independent steady-flow values of the pro-
cess fluid-dynamic properties which uniquely define a steady-flow operating state.

(A list of symbol definitions follows the references.) As an example, let



s = (TIPIM) (1)

where T 1is static temperature, p is static pressure, and M is Mach number. A
collection of n set points to be ordered is an indexed set S so that

S = {%l' Sor wees sn> (2)

For notational convenience the index set I; of S (the set of indices in §) is
defined as

T = {}, 2, ..., n) (3)

A transition from set point s to set point S5 is the time history of the
process as it is driven under external control from steady-flow state s; to steady-
flow state s5. The transition from s; to s; will be represented notationally by
the ordered pair (i,j). The transition set 2 of S is defined as the set of all
n(n - 1) ordered pairs of elements of Ig so that

Q= {9 i,3€15 and i #3) (4)

A closed tour O of S is an ordered subset of § containing n ordered pairs
(transitions) so that

0 = ((iy,ip), (igsi3)s -vvr (ip_g.ip)s (ipsip) (5)

such that each element of Ig appears once and only once, both as a first element
and as a second element of a pair in 0. For each pair in ©, the first element
equals the second element of the preceding pair. Thus, a closed tour represents a
set of transitions between the elements of S such that each element contained in S
is visited once and only once, and the final transition returns to the initial ele-
ment. An open tour O,, a subset of { containing n - 1 pairs, visits each state
once and only once remaining in the final state without returning to the initial
state, as indicated in the following:

6y = {(igsiy) s (guig)y woey (i q,ip)) (6)

For each element (i,j) of the transition set ! we compute the transition cost
between states s; and s4 (denoted by Cij) by solving the differential equations
of flow developed subsequently. A transition path giving the minimum transition cost
is used when known. The resulting set of c¢jj is ordered into a transition-cost
matrix C, for which i denotes row and j denotes column. Note that diagonal
elements of C will be null since transitions from state i to itself are not of

interest.



The cost Jg of tour © is given by the following:
Jdg = & C4 (i,3 € 9 (7)

The optimum set-point ordering of S then corresponds to the tour ©O* for which the
cost Jpg* is minimum over all possible tours.

DYNAMIC MODEL OF FLOW PROCESS
Model Requirements

Accurate mathematical representation of unsteady fluid flow in a tube of varying
cross-sectional area requires computer solution of the Navier-Stokes partial differ-
ential equations. A one-dimensional model of the National Transonic Facility (NTF)
wind tunnel based on the Navier-Stokes equations has been developed by the author for
an ultra-high-speed vector-processing digital computer. It requires an execution
duration approximately 11 times the real-time interval being simulated. Consider an
example having 10 set points to be ordered for which the average transition time is
100 sec. The vector-processing time necessary to evaluate the 90-element transition-
cost matrix using the previously described model would be 27.5 hr. Gumas (ref. 2)
has developed an eight-volume lumped model of the NTF wind tunnel which, with
simplification, could execute at a real-time rate on a high-speed serial digital com-
puter. The 10-set-point example would then require 2.5 hr of machine time for evalu-
ation of 90 transition costs. Clearly neither of these models could be employed in a
practical set-point ordering algorithm because of slow execution rates. Drastic
simplifications are required in modeling of flow for transition-cost evaluation.
Simulation studies with both the Navier-Stokes and the Gumas models with feedback
controls included show that Mach number transition settling times are always less
than 15 sec, whereas temperature- and pressure-transition times are roughly propor-
tional to the magnitude of the parameter change and in most cases exceed 15 sec.
Therefore, an ordering algorithm which assigns priority to Mach number transitions at
fixed pressure and temperature over pressure and temperature transitions at fixed
Mach number would rarely incur serious inefficiencies. Furthermore, since such an
algorithm would not require cost evaluation of Mach number transitions, Mach number
dynamics could be neglected in the process model. As a result, temperature and pres-
sure dynamics, which depend primarily on global values of mass and energy, could be
described by a single-volume lumped model. This would permit the desired model
simplification. Another advantage of neglecting Mach number dynamics is the conse-
quent reduction in the number of set-point transition costs through which the opera-
tional ordering algorithm must search. As will be shown, search time increases
rapidly with the number of set points. Although the single-volume lumped model and
analytic transition paths are idealizations of the real world, they are adequate for
purposes of set-point ordering.

Equations of State

The equations of state for a single-volume lumped model of a cryogenic wind
tunnel are now developed. The two state variables are total mass m and total
internal energy e. A state is defined as the pair (m,e). There are three control
variables:



Wi LN, flow rate
/e gas-vent flow rate
P fan power

The differential equations of state are thus given by

m = - (8)

and

.

e = thN - thG + P (9)

where hy and hg are the enthalpies of LN, and the vented gas. These equations
account for the accumulated mass and energy in the closed system. Total internal
energy e, including gas internal energy and heat energy stored in the metal tunnel
liner, is given by the following:

e = chT + cSmST (10)
where
T absolute static temperature of gas and liner
Cy specific heat of gas at constant volume
mg mass of tunnel liner
Cgq specific heat of tunnel liner

Equation (10) is based on the assumption that tunnel-liner and gas temperatures are
equal, which is actually true only for steady flow. Equation (9) assumes that the
tunnel is insulated so that external heat transfer is negligible. Furthermore, the
dynamic component of total energy is neglected. For convenience, we can define the
variable ag as the following:

C

S
ag = e m (11)

Then, from equations (10) and (11l), temperature may be expressed by the following as
a property dependent on state variables m and e:

_ e
T = 5;75—1—5;7 (12)

From the ideal-gas law and the definition of enthalpy, static pressure p and gas
enthalpy h; are expressed as functions of m and e by

Y -1 me
a v m+ a (13)




and

hG = —+— (14)

where V is the tunnel volume, 7Y is the ratio of specific heats, and K, 1is a
constant.

Gumas (private communication), through experimentation, determined that Mach
number M could be approximated by the following empirical relation:

M2

P
= = 15
Kape{Te ()

where K, is a constant and the subscript t indicates the total values of p

and T. Mach number determined by this relation will be in error by less than 10 per-
cent for a fan speed of 360 rpm and a temperature range of 111 K to 278 K. With
little change in results, py and Ty may be replaced by static values, giving

2 P

! szp\E

(16)

which gives Mach number as a function of the state variables and input variable P.

Equations (12) and (13) may be solved simultaneously for m and e in terms
cf p and T, thus giving the following:

Vp
m= —&—0 (17)
KaRT
and
Vp
- vYP
e ~ - D + asch (18)

where R is the gas constant. A set point defined in terms of state variables m
and e is the following:

s = (m,e,M) (12)

where m and e are steady-flow values. Accordingly,

m= 0 (20)

and

e =0 (21)



With eguations (12), (13), and (16), the set point determines the value of P for
steady flow. Likewise, with equations (8), (9), (20), and (21), it determines the
required values of w, and wy for steady flow. A set point may be expressed in
terms of any three functionally independent properties such as static pressure p,
static temperature T, dynamic pressure ¢, Reynolds number Np., Or density 0.

The following relations along with equations (12) and (13) may be used for determining

the values of these properties:

Q
]
N
-2
g
=

and

= Pc
Npe = 7 M\’YRT

where ¢ is reference length and | is viscosity. In the examples given later,
set points are given in (T,p,M) form.

(22)

(23)

(24)

A state transition from set point (ml'el'Ml) to set point (m2,e2,M2) is produced

by a transition control law L as follows:

I = (wN(t) g (E) ,P(t))

a triple of time functions defined over some time interval (t;,tp) such that

t
2
m, = _Ll [:wN(t) - wG(t):l dt + my

t
2
e, ‘ftl [thN(t) - hG(t)wG(t) + P(t); dt + ey

and

P (t,)
Kmpz\/—g

The transition cost J;, of control law I, is defined by

t2
3 =£1 [e) + rwy(o)] at

(25)

(26)

(27)

(28)

(29)



where r 1is the cost of LN, relative to fan-energy cost. Note that L may be diffi-
cult to determine and may not be unique. The values of W Wgr and P are subject
to the following bounds:

< <
0= wy = YN, max (30)
< <
0= wg - Y6, max (31)
and
< <
Pnin = P ~ Pnax (32)
(Upper limits on ]QNI, IQGI, and Iél, which are imposed in the NTF, are neglected
here.) An optimum control law L* is defined to be a control (among all controls
which drive the process from set point sy to s, and satisfy inequalities (30)
to (32)) which satisfies the following:
Jpx S g, (33)
for all L.
A state-transition path under control law L for the time interval (ty,tj)
from state (ml,el) to state (m2,e2) is the locus of points described in the two-
dimensional state space by the state variables m(t) and e(t), where
t
m(t) =‘£ [:wN(t) - wG(t):I dt + my (34)
1
and
t
e(t) = j;l [waN(t) - hG(t)wG(t) + P(ti] dat + e, (35)

A state-transition path produced by an optimum control law is said to be an optimum
path. For the remainder of the paper, the transition from state (ml,el) to state
(my,e5) will for convenience be denoted by the ordered pair (Am, Ae), where

Am = m, - my (36)

and

Ae = e, - ey (37



STATE-TRANSITION CONTROLS

For some control law L, which produces a state transition from (ml,el) to

(m2,e2), equation (29) may be rewritten as follows by using equations (8) and (9) to

eliminate Wyt

[
i

=)

t1

Equation (38) shows that J; is determined by state increments (Am, Ae) and
by wG(t). It follows that any control L for which w

and Am are fixed.

t
2 )
L j;l [% + (r ~ hym + (hg - hy + r)wé] at

Ae + (r - hN) Am + J" (hG - hN + r)wG dt

is optimum since

(38)

Ae

It is of interest to determine the region in state space about state (m2,e2) to

which transitions can be made with W = 0. Let wg = 0.

equation (34),

=)
Am = WN(t) dt 2 0
£

From inequality (32) and equation (35),

t
2
- >
Ae = hy Am +.§L P(t) dt 2 hy Am + P oin At

1

From inegualities (30) and (39),
S
< - <
0 > Am . wN(t) dt WN, max At

so that

Am

W
N,max

At 2 20

Substituting inequality (42) into inequality (40) gives

P .
Ae > (hN + _ﬁﬂgfl_) Am

W,
N,max

From inequality (30) and

(39)

(40)

(41)

(42)

(43)



Thus, necessary conditions for state transition (Am, Ae) to be realized with Wg =0
are inequalities (39) and (43).

Conversely, let conditions defined by inequalities (39) and (43) be satisfied,
that is,
Am' 2 0 (44)

and

v

P_.

w.
N,max

where the prime indicates particular values of Am and Ae. Choose Wwg = 0 and
WN = WN,max- From inequality (39) it follows that

J S L (46)

wN,max

Also choose the following:

_ [Ae’ >
P = <Am' - hN,max)wN,max = Phin (47)

From the equation part of inequality (40) it follows that

- ' Ae’ L oAat
Ae = hN Am' + (Am, - hN)wN,max At = Ae (48)

Thus, inequalities (39) and (43) are also sufficient conditions for state transition
(Am', Ae') to be realized with wg = 0.

To summarize, necessary and sufficient conditions for state transition (Am, Ae)
to be realized with W = 0 and satisfying conditions (30) and (32) are

Am

v
(@}

(39)

and

v

P .
Ae (hN + —%) Anm (43)

wN,max

It is shown in the appendix that a transition control L in which wy = 0 is
locally optimum in the sense that along a fixed transition path between (mj,ej) and
(m2,e2) any positive variation GwN(t) about wy = 0 causes a positive increase in



transition cost J over its value for Wy = 0. The region in state space from
which transitions can be made to state (m,e) with Wiy Z 0 is now determined. Let
Wy = 0. From inequality (31) and equation (34),

t2
Am = —f wg(t) dt <0 (49)
t1

and from equation (35),

N
Ae = -h . (t)w.(t) + P(t)]| dt (50)
7 Fratego + reo]

The enthalpy hg is bounded as follows:

<
Cmein hG(t) - Cmeax (51)
From inequalities (49) and (31),
NS L (52)
wG,max
From equation (50) and inequalities (31), (51), and (52),
Ae 2 ( T + P At 2 e, T “min ) Am (53)
e = |-c \"/ ; Zlc -
prmax"G,max mln) Pmax WG, max

Thus, necessary conditions for state transition (Am, Ae) to be realized with Wy =0
are inequalities (49) and (53).

Next, let the conditions defined by inequalities (49) and (55) be satisfied,
that is,

Am' £ o {54)
and
Ae' 2 (c T . - —Pﬂi—r—‘—> Am' (55)
pomin wG,max
Set LN = 0, We = wG,max' and
= _ Qe > p + (T - T_: )w > P (56)
P = cpT Am' /WG, max = “min min’ "G, max min

10




From inequality (54),

_ Am'

At = ~ (57)
W,
G,max
and from equation (35),
pe = 2 fe’ - he
e = . —CpTWG,max + {CpT ~ At ) VG, max dt = Ae (58)
1
Thus, inequalities (49) and (55) are sufficient conditions for state transition
(Am', Ae') to be realized with wy £ 0.
Summarizing, conditions for state transition (Am, Ae) to be realized with
Wy = 0 and satisfying conditions (31) and (32) are as follows:
Am £ 0 (49)
and
Ae 2 (c T - @‘—) Am (53)
= a
pmax wG,max
or
P .
> B min
Ae 2 (Cmein ;—————) Am (55)
G,max

Inequalities (49) and (53) taken together constitute necessary conditions, whereas
inequalities (49) and (55) taken together constitute sufficient conditions.

It has not been proven that controls with wy = 0 are globally optimum over
their regions of admissibility. However, computational experience did not reveal any
controls less expensive than those with wy = 0 for a given transition. In order to
develop the curves in figure 1, inequalities (39), (43), (49), and (55) are rewritten
in terms of m;, e;, My, and e,. For W = 0,

my < m, (59)
and

P_.
min
e, e, +|h. + ———}(m, - m,) (60)
1 2 ( N WN,max) 1 2

11
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Figure l.- Transition-path regions in mass-energy plane.

>
m; = m, (61)

and

IA

P .
ey oin )(ml - my) (62)

ey + Cmein S w
G,max

The regions defined by inequalities (59) to (62) appear in figure 1, in which point C
represents terminal state (mj,e;) in the mass-energy plane. The shaded area labeled
We Z 0 represents the set of initial states (mj,e;) from which state (mp,e;) can be
reached with controls having wg = 0 (defined by inequalities (59) and (60)).
Similarly, the area labeled wy = O represents the set of initial states from which
(m2,e2) can be reached with Wy = 0 (defined by inequalities (61} and (62)).

Figure 2 shows the regions of figure 1 mapped into the temperature-pressure plane.

12
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Figure 2.- Transition-path regions in temperature-pressure plane.

Outside the optimum and locally optimum regions of figures 1 and 2, precise
determination of optimum controls would require the use of techniques such as the
minimum principle or dynamic programming (ref. 3), involving extensive computational
requirements. After preliminary investigation of the minimum principle did not dis-
close any simple optimum control strategies for the cases which require its applica-
tion, numerical parametric studies were performed to experimentally discover the
best transition paths, which led to the following strategies:

Case I - decreasing temperature and increasing pressure. As shown in path ABC of
figure 2, cool the tunnel at constant pressure to the boundary of the wg; = 0 region,
then cool and pressurize with wg = 0 to the terminal set point C. Additional reduc-
tion in transition cost is obtained along path AB'C. However, the pressure decrease
along segment AB' followed by a pressure increase along segment B'C would be undesir-
able in actual wind-tunnel operations. Therefore, path ABC is preferred to AB'C.

Case II - decreasing temperature and decreasing pressure. Since experimental
numerical studies did not reveal any preferred paths in this region, arbitrary
straight lines are followed in the temperature-pressure plane for convenience, as
illustrated by path FC in figure 2.

i3




For computational convenience linear paths are also followed in the wg =0
and wy = 0 regions, as shown by paths DC and EC in figure 2. Paths ABC, FC, DC,
and EC mapped into the mass-energy plane are shown in figure 1. Controls actually
used in an automated cryogenic wind tunnel may be substituted for those developed

herein.

The control logic required to follow a direct path in the temperature-pressure
plane between initial state (Tl'pl) and final state (T2,p2) is now presented. The
equation of a linear path is

- _ e Ap ., _
where
- Ap
a=p; - ZE—Tl (64)
and
= Ap
A = A (65)

Substituting equation (63) into equations (17) and (18) gives the following
expressions for m and e as functions of T:

m = (a + AT) (66)

K_RT
a

and

_ Va VA
*Txv-1n " ':Ka(v -1 F aSC‘E]T (67)

Differentiating equations (66) and (67) gives

h = Va2 iy (68)
K RT
and
- VA :
e - [Ka(“{ -0 aScV]T (69)

Equat@ons (8), (9), (68), and (69) are solved simultaneocusly to eliminate ﬁ, e,
and T, giving W as a function of wy, P, and T as follows:

(hN - cpT)wN + ?

2
GT” + ¢ T
p

wg = wy + (70)

14



where

RK
G = ——Vaa(—————Y V_.)\l + ascv> (71)

Alternatively, wy may be obtained as a function of Wer P, and T to give

(hy - cpT)wG + P

W, (72)
N G 2

GT™ + hN

Equations (70) and (72) are in a form suitable for implementing a state-variable feed-
back control law. For example, if wy 1s to be the independent control variable, it
is chosen arbitrarily within the bounds of inequality (30). Mach number M, also
chosen arbitrarily, must be such that P remains within the bounds of inequality (32).
Since state variables m and e are known for all times during a controlled state
transition, T 1is obtained from equation (12). At each stage of the controlled
transition the required value of control variable P is obtained from equations (12),
(13), and (16), and the required value of wg is computed from equation (70).
Similarly, if e is the independent control variable, it must satisfy inequal-

ity (31). The required values of wy are then obtained from equation (72).

For transitions occurring within the shaded region of figure 2 labeled wg B o
(or wy = 0), wg (or wy) is selected as the independent control variable and set
to zero. The required value of wy (or wG) is computed from equation (72) (or
eq. (70)). Outside both shaded regions of figure 2, wy 1s selected as the inde-
pendent control variable and is made as large as possible to minimize transition time
while maintaining itself and Wg within the bounds of inequalities (30) and (31).
If inequality (31) is violated, wg 1is selected as the independent control variable
instead. Mach number is chosen large (0.8) for transition directions of increasing

energy and small (0.3) for directions of decreasing energy, also to minimize transi-
tion time.

Equations (70) and (72) are invalid for constant-temperature transitions since
the slope A becomes infinite. For increasing pressure at constant temperature,
W 1s set to zero and Wi is computed using the following:

P

Wyg = ——————— (73)
N -
cVT hN

which is obtained by differentiating equations (17) and (18), setting T to zero,
and eliminating m and e as was done for equations (70) and (72). For decreasing
pressure at constant temperature, wy is made independent (set to zero when possible)
and wg is computed from the following:

(hy = c,Mwy + P

Vi = RT (74)

15



OPTIMUM TOUR GENERATION
The Traveling Salesman Problem

Consider a set S of n set points. From this we can generate a transition-
cost matrix C by using the dynamic-flow model and transition-control logic
developed previously, with the diagonal elements set to infinity. The problem is
to determine the optimum tour ©O* having the least cost Jox. This problem is
identified in the mathematical programming literature as the "traveling salesman
problem" (TSP), wherein a salesman is to visit each of n cities only once, begin-
ning and ending at the same city. The problem involves the order in which he should
tour the cities to minimize the total distance traveled. Since there are (n - 1)!
possible tours, enumeration is a feasible method of solution only for small n.

The TSP is termed symmetric or asymmetric depending on whether C is symmetric
or asymmetric. Various techniques for exact solution of both symmetric and asymmetric
TSP's appear in the literature, including dynamic programming, integer programming,
and branch and bound methods. In addition, numerous approximate methods exist which
are not considered here.

Dynamic~-programming algorithms (described in ref. 4) perform well for small n
(less than 13). However, computer storage requirements become excessive as n
increases.

The TSP may be cast as a linear-programming problem having integer values 0 and 1
and 2n-l - 1 constraints. Various techniques based on this approach have been
developed. According to Bellmore and Nemhauser (ref. 4) the performance of integer-
programming algorithms varies widely from problem to problem. Execution time grows
rapidly with increasing n.

The branch and bound methods appear to offer the best performance. Earlier
versions of branch and bound developed by Little et al. (ref. 5) and Shapiro (cited
in ref. 4) are reviewed favorably by Bellmore and Nemhauser (ref. 4). Little's
method, which is simple to program, is used in the work reported herein. It offers
adequate performance without excessive storage requirements for n < 40, although
reference 5 cautions that solution time increases exponentially with n. Later
extensions of branch and bound methods such as the restricted Lagrangian approach of
Balas and Christofides (ref. 6) provide superior performance for large n. For
example, this method solves a 375-node problem in less than 82 sec, whereas a
100-node problem executes in an average of 0.7 sec on a large serial digital com-
puter. Such a high-performance algorithm might be employed in a production version
of a set-point ordering package, but it was not required for the study reported
herein.

Branch and Bound Algorithm

A brief description of Little's branch and bound method is now given. The pro-
cedure is to partition the set of all tours by constructing a binary tree structure,
each node of which represents a set of tours either containing or excluding some par-
ticular transition. We then compute a lower bound on the costs of the tours contained
in each node. At each stage of the decomposition, the node whose omission would be
the most expensive is decomposed and new lower bounds are computed for the decomposi-
tion. It is shown in figure 3 that from the root of the tree, which represents the
set of all tours, there are two branches: Node 1 (to the left) represents the set of

16



OPTIMUM
TOUR

Figure 3.- Branch and bound decomposition. A bar over an ordered
pair indicates exclusion of that pair.

tours excluding transition (i,j), denoted by (i,j); node 2 (to the right) represents

the set of tours containing transition (i,j). (The letter symbols used in this
figure represent integers.) Node 3, the left subnode below node 2, represents the
set of tours containing transition (i,j) and excluding transition (k,%). Node 4

represents the set of tours including transitions (i,3) and (k,%). The decomposition
continues in a like manner as illustrated in the figure. A node is terminal if no
more transitions may be excluded; the set of transitions contained in a terminal node
represents a single tour. Terminal node n in figure 3, for example, contains
transitions (i,3), (k,%), (p,g), (m,n), (r,s), and (t,u). A path is pursued only as
long as its current lower bound remains less than all other lower bounds in the tree.
Otherwise, the path is abandoned and the search resumes at the node having the least
lower bound. An optimal tour has been found when a terminal node is reached whose
true cost is less than or egqual to every other lower bound computed in the tree.

A lower bound on the costs of the set of all tours is obtained by reduction of
the transition-cost matrix C. A row (or column) is reduced by subtracting its small-
est element from each element in the row (or column). A matrix is reduced if all
elements are nonnegative and if each row and each column contain at least one zero.
The sum of elements required to reduce every row and column in C is a lower bound

17



on the costs of the set of all tours. Suppose the search has reached node (i,3).
Based on decision logic described later, a branch is constructed from node (i,]j) to
node (k,%), and row k and column £ are deleted from C to form a new matrix C'.
Matrix C' is then reduced, and the lower bound at node (k,{) equals the lower bound
at (i,j) plus the sum of the reducing elements of C'. The lower bound of node (k,%),
equals the sum of the lower bound at (i,Jj) and 6(k, %), defined as the sum of the
smallest cost in row k and the smallest cost in column £. To determine (k,4%),
O(k,L) is computed for each position in C' and a branch is made to the node (k,%)
for which 0(k,%) is the largest. This strategy favors transitions whose exclusion
would increase the cost of a tour most rapidly.

At each step of the branching process transitions must be excluded from a path
which would produce subtours, that is, transitions to any state already included in
the partially constructed tour. Such transitions are eliminated by setting their
transition costs to infinity in the reduced cost matrix. Thus, many potential dead-
end search paths are eliminated. A complete tour has been determined when C is
reduced to a 2 by 2 matrix.

Little's algorithm is explained fully in reference 5. An example of a branch and
bound solution to the TSP is given in Whitehouse and Wechsler (ref. 7). More formal
expositions of branch and bound algorithms appear in Henley and Williams (ref. 8) and
in Garfinkel and Nemhauser (ref. 9).

NUMERICAL PERFORMANCE OF SET-POINT-ORDERING ALGORITHM
Digital Computer Program

A digital computer program has been written which combines a single-volume fluid-
flow model, transition-path control logic, and a branch and bound tour-generating
algorithm, all as previously described, into a set-point ordering package. It was
found that a variable-order, variable-step-size Adams method (ref. 10) for integrating
the differential equations is ideal. After 6 to 10 starting steps during the first
second of simulated time, the variable step size increases rapidly to as much as
several hundred seconds. Most test cases involving simulated time durations up to
2000 sec execute in 25 steps or less. As a result, the total execution time required
for transition-cost-matrix evaluation is a fraction of that required by the branch
and bound algorithm.

The program accepts set points in the form of equation (1), that is,
S = (TIPIM)

For each combination of temperature T and pressure p, all associated values of Mach
number M are ordered in ascending order. As discussed previously, transition costs
are evaluated only for temperature-pressure transitions. Diagonal elements of

matrix C are set to infinity.

Closed-Tour Performance
Several test examples based on NTF parameters are now discussed. Figure 4 shows

six set points numbered in the temperature-~pressure plane to indicate the ordering
of an optimum closed tour (example 1). The arrows between the points, which in some
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cases are schematic rather than actual transition-path loci, are labeled where appli-
cable to indicate optimum transitions with wy =0 or wg = 0. Note that the tour,
a simple closed figure, contains four optimum transitions. The significantly lower
cost of transitions with Wy = 0 causes their high frequency of occurrence in all
the cases studied.

A nine-set-point closed tour is shown in figure 5 in the same format (example 2).
Note that the convoluted shape of the tour produces a preponderance of optimum transi-
tions, six out of nine in this example. These set points were chosen to fill a rec-—
tangular region of the temperature-pressure plane rather than a realistic operating
envelope.

A l2-set-point closed tour (example 3) is shown in figure 6. Nine of the
12 transitions are optimum, with wy = O in each of the 9 and wg are zero in
transition (8,9). Each of the three examples indicates that depressurization at
constant temperature is highly favored by the algorithm because it is achieved with
zero coolant consumption.

PRESSURE, atm
H
|

3 P

2

| _—

0 1 1 1 1
100 150 200 250 300

TEMPERATURE , K

Figure 4.- Six-set-point optimum closed tour.
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Figure 5.- Nine-set-point optimum closed tour.
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Figure 6.~ Twelve-set-point optimum closed tour.



Open-Tour Performance

Two optional modes are provided in the program which generate optimum open
tours as follows:

1. Determination of the best open tour with a free terminal set point
2. Determination of the best open tour with a fixed terminal set point

Mode 1 is implemented by setting the first column of matrix C to zero prior to
execution of the branch and bound algorithm. This modification removes the cost of
the final transition to set point 1 from the computation. The resulting closed tour
is equivalent to the least expensive open tour.

To understand mode 2 operation, let set point k be the selected fixed terminal
set point for an open tour. BAll of the elements of column 1 of C are set to infin-
ity except element (k,%) which is set to zero. This forces the final transition of
an optimum closed tour to be from set point k to set point 1 at zero cost, which is
equivalent to an optimum open tour terminating at set point k.

The nine-set-point optimum open tour with free terminal set point for example 2
data, shown in figure 7, has the same ordering as the optimum closed tour. Its cost
is only slightly less than that of the closed tour. Figure 8 shows the optimum open
tour for the same data ending at set point 2 (222 K, 6.0 atm), which forces a complete
reordering of the set points at considerably greater cost.

Figures 9 to 11 illustrate open tours for the 12-set-point data of example 3.
The l2-set-point optimum open tour with free terminal set point, shown in figure 9, is

PRESSURE, atm
(o]
I

2 -
I -
COST 15474
0 | | | O |
100 150 200 250 300

TEMPERATURE, K

Figure 7.- Nine-set-point optimum open tour with
free terminal set point (mode 1).
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PRESSURE , atm
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COST 18912

100 150 200 250 300
TEMPERATURE , K

Figure 8.- Nine-set-point optimum open tour with
fixed terminal set point (mode 2).

COST 12432

I l . 1 1
100 150 200 250 300
TEMPERATURE, K

Figure 9.- Twelve-set-point optimum open tour with
free terminal set point.



PRESSURE, atm
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COST 14893

0 1 I 1
100 150 200 250 300

TEMPERATURE , K

Figure 10.— Twelve-set-point optimum open tour with
fixed terminal set point at (167 K, 6.0 atm).

PRESSURE, atm

COST 14051

0 1 | ]
100 150 200 250 300

TEMPERATURE , K

Figure 11.- Twelve-set-point optimum open tour with
fixed terminal set point at (167 K, 4.7 atm).
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slightly reordered from the optimum closed tour. Figures 10 and 11 show open tours
with fixed terminal set point for the same example. Since the tour of figure 10
terminates at (167 K, 6.0 atm) (the point of maximum pressure and minimum tempera-
ture), the algorithm is unable to take advantage of three transitions of decreasing
pressure at constant minimum temperature, which results in a 20-percent increase in
total cost over the optimum open tour with free terminal set point of figure 9. The
open tour of figure 11 with fixed terminal set point at (167 K, 4.7 atm) is less
expensive than that of figure 10 because of the two decreasing-pressure, constant-
temperature transitions from (167 K, 6.0 atm) to (167 K, 5.3 atm) and then to

(167 K, 3.3 atm) with Wiy = 0, even though the final transition is from (167 K,

3.3 atm) back up to (167 K, 4.7 atm). These runs demonstrate that open tours with
fixed terminal set points should be selected carefully to avoid significantly higher
operating costs.

CONCLUDING REMARKS

An algorithm for minimum-cost set-point ordering in a cryogenic wind tunnel has
been developed. Efficient evaluation of state-transition costs is accomplished by
means of a single-volume lumped model of wind-tunnel flow dynamics and the use of a
high-performance numerical integration technique. Some idealized minimum-cost state-
transition control strategies have been determined which provide the lowest attain-
able transition cost between set points. An operational set-point ordering proce-
dure, which solves the "traveling salesman problem," is employed to determine the
least costly ordering (tour) of a prespecified set of operating set points. These
procedures have been organized into a preliminary software package for set-point
ordering which is set up for National Transonic Facility wind-tunnel operating param-
eters. This software package has options for generation of optimum closed tours,
open tours with free terminal set points, and open tours with fixed terminal set
points. Numerical studies show that transitions which consume no liquid nitrogen
coolant are highly favored because of their low cost. It is also shown that open
tours with fixed terminal set points may be excessively costly and should be avoided.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

September 1, 1981
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APPENDIX

LOCAL OPTIMALITY OF ZERO-COOLANT TRANSITIONS

The state-transition cost J; defined in equation (29) as a functional of the
control law L(wN,wG,P) is

t2
J (wy) = j; (P + rwy) dt (A1)
1

It is to be shown that if a transition along a fixed path between states (ml,el) and

(my,e5) can be effected with wy = 0 then J(wy = 0) is locally minimum along that

path. Let 6wN denote a positive variation in Wy about Wy = 0. It will be shown
that the corresponding variation &J is positive.

Let g(m) be a differentiable function representing a transition path passing
through points (ml,el) and (m2,e2) for which N = 0 in the (m,e) plane. Since m
decreases monotonically with wy = 0 (inequality (49)) it follows that g{(m) must be
a single-valued function. Along g{m) equations (8) and (9) are

m=wy - Wg (A2}
and
e =gM=hw, - hw, +P (a3)
where
_ dg(m)
Im = T am (A4)
m + ag
3/2
M2 Y - 1 g (m)
P=M Km cvv m[% + aS (r6)

and M is a function of m and e. The transition cost is obtained from egua-
tions (29) and (A2) as

my P + rwN
J(wN) = ———— dm (A7)
m YN T VG
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APPENDIX

Equations (A2) and (A3) are solved to obtain Wwg; in terms of wy, hg, and P,
resulting in the following:

wN(h - gm) 7+ p

N
W = —- - (A8)
G -
hG Im
Substituting equation (A8) into equation (A7) gives
my (P + rwy) (hgy - gp)
J(WN)tj ey = O (9
my NG N

Equation (A9) now provides the transition cost along transition path e = g{m) as a
functional of wy independent of the transition time limits t; and +t,5. The
variation &3 of J(wN) about wy = O, obtained by eliminating terms of order 2 and
greater from the increment

AT = J(wy + SwN) - J(wy) (A10)

is found to be

w. =0 Swy > dm (Al1)

jmz (r + hy - hy) (g, - he)
=

cSJI =

my

Set wy = 0 in equations (8) and (9) and divide equation (9) by (8) to obtain the
following:

g =—-== hG - =< hG (Al2)

Since 6wN, r, hG, and P are positive and hN and Am are negative, it follows

from eguation (All) and inequality (Al12) that 06J is positive.
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SYMBOLS

a y-intercept of linear function, defined in equation (64)
ag = (cg/cy)mg  (eq. (11))

c transition-cost matrix

c reference length, m

i3 transition cost from state s; to state S5

cp specific heat of gas at constant pressure, kJ/kg-K
Cq specific heat of tunnel liner, kJ/kg-K)

Cy specific heat of gas at constant volume, kJ/kg-K
e total internal energy, kJ

G = i;?(YY}1_+ ascv> (eg. (71))

g {(m) single-valued function of m

In first derivative of g(m), é%%?L

hG enthalpy of vented gas, kJ/kg

hN enthalpy of LN,, kJ/kg

I index set

J transition cost

Jg, transition cost of control L

Jg total cost of tour O

K constant, 9.87 X 10~3 atm/kPa

Km constant, 374.2 kW/atm-Kl/2

L transition control

M Mach number

m total mass, kg

m mass of tunnel liner, kg

NRe Reynolds number

P fan power, kW
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P static pressure, atm (1 atm = 101.3 kPa)

q dynamic pressure, kPa

R gas constant, kJ/kg-K

r ratio of LN2 cost to fan-energy cost, 7.886 X lO6 kJ/kg
S set of set points

s set point

T static temperature, K

t time, sec

\Y volume of tunnel, m3

W, gas—-vent flow rate, kg/sec

Wy LN, injection flow rate, kg/sec
Y ratio of specific heats

A increment

8 variation

© closed tour

@O open tour

A slope of linear function, defined in equation (61)
u viscosity, N-sec/m2

p density, kg/m3

2 transition set

Subscripts:

max maximum

min minimum

t total value

1 initial state

2 final state

A dot over a symbol indicates differentiation with respect to time. A prime
denotes a particular value of a variable. An asterisk denotes an optimum function or
value.
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